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Dynamics of percolating networks 

E Royer, C Benoit and G Poussigue 
Groupe de Dynamique des Phases CondensBes, Unite associee au CNRS 233, Universitd 
de Montpellier 11, Sciences et Techniques du Languedoc, Place Eugene Bataillon, 
34095 Montpellier C6dex 5,  France 
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Abstract. The dynamic properties of the 20  percolation nehvork are investigated, using the 
spectral moments method. The density of states of percolating clusters of size IO6 or larger 
is calculated at the percolation threshold p, and at different occupation probabilities varying 
fromp, t o p  = 1. A s p  increases, the phonon, fracton and high frequency regimes appear. 
These results can be interpreted by assuming that a s p  increases, the percolating cluster 
becomes homogeneous, giving rise to a phonon regima at low frequencies and to an accumu- 
lation of modes at the Van Hove singularities of the square lattice. The exponent of the 
coherence length away from the critical point is found to be identical with the mean field 
value. The localization of modes has been studied by computing the Green functions. 
Localized and extended modes are present in all the spectrum at pI. except in the high- 
frequency zone where all modes are strongly localized. 

Over the past few years, fractal structures have been the subject of much attention. The 
most widely studied systems include the percolation networks which are fractal on 
smaller length scales than the percolation length Ec.  Alexander and Orbach (1982) first 
studied the density of states (DOS) on afractal basis and suggested with a scaling argument 
that the DOS obeys a universal law above a characteristic frequency w ,  (fracton modes): 
D(w)  = wd-'  (ais the fracton dimensionality and equals 5 for percolation fractals in all 
Euclidean dimensions d 3 2). Under U,, the DOS follows the conventional Debye law 
(phonon modes) D ( w )  = ad-'. 

Computer simulations which do not require diagonalization have been performed 
by several workers: Angles d'Auriac et a1 (1983); Derrida et a/ (1 984) used an effective- 
medium approximation treatment (which did not allo;v them to determine critical 
exponents); YakuboandNakayama(1987,1989) usedthe resonancemethodofWilliams 
and Maris (1985) on large percolating clusters for the 2D and 3D square lattice; Qiming 
Li et af (1990) studied the Sturm sequence method. They all found a dimensionality 
close to f .  In 1984, Aharony and Stauffer (1984) suggested that, for d = 2 ,  
d = % = 1.309 which is 2% lower than 4 and this was confirmed by Keramiotis et a/ 
(1985). However, following Qiming Li eta/ (1990), 9 is a good approximation, although 
it is probably not the exact value in all Euclidean dimensions (Normand et al 1988, 
Roman 1990). The existence of a hump or a steepness in the crossover region of the DOS 
in percolating clusters has been extensively discussed with contradictory results. 

It has also been suggested that the fracton wavefunction has the superlocalized form 

where t ( w )  is the localization length and the exponent dm is larger than 1. Levy and 
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Souillard (1987) suggested that d* equals 1.42; Aharony et al (1987) suggested 0.95. 
Recent studies, by De Vries etuI(1989). Qiming Li ef a1 (1990) and Roman ef a1 (1991) 
observe no evidence for fracton superlocalization. Yakubo and Nakayama (1989) found 
de equal to 2.3, which is not consistent with any theoretical predictions. 

To clarify these points, we were interested to apply our new method, the spectral 
moments method, which is a powerful tool for determination of linear responses (infra- 
red, Raman scattering or inelastic neutronscattering) of harmonicsystems (Benoit 1987, 
1989,Benoit andPoussigue 1989). Recently, we foundthat thespectralmomentsmethod 
could provide, with some variations, the total DOS with good accuracy and the Green 
functions of systems. The detailed computing aspect of the method will be published 
elsewhere (Benoit eta! 1991). Thismethod allowsustowork withaverylargepercolating 
cluster (up to 2 X lo6). The localization of fractons is then computed with smaller 
lattices. 

We have studied a ZD 1415 X 1415 square lattice at and above the percolation 
threshold pc  (=0.593), for four values of the occupation probability, to compute the 

We assume now that atoms with mass m are placed at the sites of the lattice and are 
connected by springs. The displacements of the particles are represented by scalars; for 
instance, the motion is in an orthogonal direction to the plane of the lattice. 

DOS. 

Then the set of equations of motion for site i is given by 

where kgi = - Zj+i k,, U, is the scalar displacement of the site j and kij are the force 
constants between the atoms i and j ,  equal to 0.125 if i and j are occupied and to 0 
otherwise. 

Following Aharony eta1 (1985). the DOS can be written 

D(w,p) = Aod-IF(o/w,) (3) 

0, = ( p  - pc)’D!d (4) 

where F(x) = 1 for x + 1, F(x) = x * - ~  for x 4 1 and 

(v is the correlation length exponent and D is the fractal (Wausdorff) dimension). For 
d = 2, D = M, v = 3 (Stauffer 1985) and then, with 2 = f, vD@ = 1.931. 

To test the accuracy of the method, we first compared the result of the moments 
technique for the DOS, and the exact result obtained for a regular 1415 x 1415 square 
lattice. We observed that excellent agreement is obtained; see figures I(e) and 2(e) 
where the DOS is plotted versus o and versus U = w2,  respectively. 

Computations were performed from the probability p = p c  = 0.6 t o p  = 1, with a 
step of 0.1, on the same lattice. The sizes of the percolating clusters and the computing 
times are given in table 1. The CPU times (1) are times to construct the dynamical matrix 
and to find the percolating cluster; the CPU times (2) are times to compute the DOS of this 
cluster. At p = 1, a unique program is used, since all the sites of the lattice form the 
cluster. We plot the DOS of log[D(w)] versus log w and the DOS G(u) versus U, where 
U = w2,  in figures 1 and 2. The DOS is normalized to 1 for every figure. 

In figure l(u) for p = 0.6, the full line is the tangent of the DOS, and its slope is 
exactly 0.302, which is very close to 0.309. We therefore confirm the Aharony-Stauffer 
conjecture although 0.309 is nevertheless a good approximation of $. Several peaks in 
the DOS at p = pc  (figure 2(u)) are localized at the following square frequencies: 0.068; 
0.125; 0.170; (0.250); 0.284; (0.331); 0.370; 0.427; 0.512; (0.594); 0.637; 0.700 (where 
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Figure 1. Densityofstateson alog-log scaleof the percolatingclusteratdifferentocarpation 
probabilitiesp, formed on a 1415 X 1415 square lattice: the straight lines are only guide for 
the eves and aive the slope of the DOS and 0,. (a) P = 0.6 pC; (b)  P = 0.7: (c )  P = 0.8; ( d )  - .. 
p=O.9;(e)p= 1 .  

the frequencies in parentheses correspond to peaks with low intensity). These results 
prove that, at the percolating threshold, regions with few sites are mainly present and 
behave as a homogeneous small (n x R) square lattice (2 c n S 10). These frequencies 
are found when asmall regularsquare lattice iscomputed, except for the two frequencies 
0.284 and 0.512, which seem to be the frequencies corresponding to 0.25 and 0.5 for a 
small square lattice, maybe displaced because regions are connected to each other. 

Abovep, (figure I(b) ,p  = 0.7; figure I(c),p = 0.8; figure l (d) ,p  = 0.9; figure I(e), 
p = 1) we observe three clear regimes; at lower frequencies than a,, the slope of the 
tangent of the DOS is about 1 so that the Debye law holds. At medium frequencies, 
the Aharony-Stauffer rule does not hold any longer above w, since, as p increases 
from pc,  the slope increases from 0.302 to 1. This is a new result; most percolation 
networks have been studied near the percolation threshold, so that the slope of the 
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Figure 2. Plot of DOS versus p = o f  at different occupation probabilities p for a 
1415 x 1415squarelattice: (n)p = 0.6-p,;  (b )p  = 0.7;(c)p = 0.8: (d)p = 0.9: ( 4 p  = I .  

Table 1. p (the occupation probability of the percolation network), the sizes (the numbers 
of sites of the percolaling cluster, formed on a 1415 x 1415 square lattice), the CPU times 
(I]  (the times to find the percolating cluster and construct the dynamical matrix) and the 
CPU times (2) (the times to mmpute the DOS of the percolating cluster). 

CPU time 

, .  
P Size (U) (2) 

0.6 904 068 39 min 49 s 6 min 32 s 
0.7 1378975 10 min 03 s 7 m i n 1 5 s  
0.8 1599431 5 min 41 s 7 min 56 s 
0.9 1802855 3 min 29 s 8 min 41 s 
1 2 002 225 9 min 21 s 
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F i i  3. n i e  characteristic frequency m. versus 
Ip - p J  on a log-log scale. 
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tangent remains an approximation of f .  Now, above pc,  the percolating cluster loses 
its fractal properties since it causes the regular square lattice to fill up and it becomes 
homogeneous a s p  grows. It is clear that equation (3) does not represent the DOS of 
the percolation network. Such a conclusion has already been mentioned by Yakubo 
et al(1990), when considering the magnitude of the DOS in the fracton regime. Hence, 
at maximum frequencies, we confirm the accumulation of ‘missing modes’ (Yakubo 
et all990) in the upper end of the fracton range at the Van Hove singularities which 
are the points (./a, 0) (0, n/a)  and (./a, %/a) of the boundary of the first Brillouin 
zone of the square lattice (a  is the atomic distance taken to be 1 here). This is very 
well confirmed by figure 2 where the DOS is plotted versus U. These three regimes 
are called phonon modes, fracton modes and particle modes by Vacher er a1 (1990). 
Figure 1 tells us that the DOS does not exhibit a hump or a steepness in the crossover 
region. 

In figure 3, we plot on a log-log scale, the frequency me versus Ip - p J .  As 
expected, w, approaches zero when p approaches pc. The slope of the straight line 
is 0.7 i: 0.2 which is in agreement with the work of Qiming Li et ai (1990), who find 
a value of 1.0 * 0.3 although the scaling theory predicts 1.913 (equation (4)). They 
suggested that this discrepancy is due to the difficulty in determining w, exactly. 
However, as the same result is obtained by two different numerical methods, it is 
necessary to analyse these results a little more. Some values of p used in this work 
are very far from the percolating threshold pc  and the corresponding clusters no 
longer have a fractal structure so that the scaling law is not, strictly speaking, true. 
From the work of Alexander and Orbach, the lowest frequency of the fracton modes, 
w, behaves as mc= In the percolation network, we have (Stauffer 1985, 
Feder 1988) Ec = Ip -pc1-’’ so that equation (4) holds close to the critical point. 
However, far from the critical point, percolation clusters may be described by charac- 
teristic length with a different critical exponent. If we assume that 

E c  = IP -Pel- ( 5 )  

0, z lp - p c l - d j  (6) 

for p S p c ,  then 

and comparison with experimental data gives q~ = O S .  This is generally the classical 
mean field value in phase transitions. However, it is not clear to us why such a 
value is obtained here, although it is well known that the spatial range of magnetic 
correlations diverges with the same exponent as the percolation problem (Klein et al 
1978, Stoll and Domb 1979). 
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In order to study the localization or extended nature of eigenstates in the fracton 
regime, we used the imaginary part of the Fourier transform of the time-dependent 
position correlation function given by (with unity masses) (Maradudin 1969) 

H(n,  n ‘ ,  w )  = m[n(o) + 11 I: e n ( j ) e n * ( j ) - - [ 8 ( w  - wI) - b(w + w,)]  

where w, and e&) are the frequency and the amplitude of mode j ,  and n(w) is the 
Boltzmann factor. This function indicates the influence of the atom n on the atom 
n’; if it vanishes, there is no correlation between the atoms n and n‘. The direct 
computation of H(n,  n’, w )  presents some difficulties and we worked with the fol- 
lowing function: 

(7) 
1 

I 2WI 

= 2 e.(iIe.~O>~(u - A,) = ~ ( n ,  111, U) (8) 
I 

with U = w2, h, = 0: which is identically { l / b & [ n ( w )  + 111 H(n,  n’ ,  w )  for w > 0, 
symmetrical and independent of the temperature. It can be shown that, with z = 
U t. k, 

S(n, n‘,  U) = (-1/n) Lin {Im[h(n, n’ ,  z)]). (9) 
c o t  

As the imaginary part of h(n ,n ’ , r )  is not a positive function everywhere, the 
moments method does not work directly. We thus define two positive functions the 
combination of which gives h, and now the moments method is applied (detailed 
technical aspects of the method will be published elsewhere (Benoit et nl 1991)). 

The localization of the eigenmodes is often characterized by the inverse par- 
ticipation ratio P;’(u) = \@(r8 ,  u)Iz”, which is a measure of the effective number 
of sites covered by a normalized eigenstate CP (De Vries et a1 1989). However, first 
here the normalization constant of the eigenstates is unknown and secondly the 
presence of the Dirac function gives some difficulties. So we prefer to determine the 
second and the fourth spatial isotrope moments of the correlation function. For a 
given frequency w (or U), the function S(n, n’, U) is proportional to the wave packet 
amplitude of the modes centred on w (or U). We used equation (8) to calculate the 
second and the fourth moments of the spatial distribution of the amplitude; let us 
define 

p z ( u )  = C IS(n, n’, u)I (rn - r,VY (10) 

p 4 ~  = C Is(n, n‘ ,  U)] ( r ,  - (11) 

p(n, U) = @4(u)/pZ(u)* (12) 

n’ 

n’ 

Then the localization ratio is 

Moreover P(n,  U )  is small, and the modes are localized. 
To analyse these results, we supposed that the eigenmodes vary as equation (1) 

with = 1. We use it as a trial function and we determine the localization ratio 
L(E) for several values of E,  using the same distances as used for the determination 
of (12) (figure 4). Here the atom n is the atom of ‘the centre’ of the percolating 
cluster. 
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F i e  4. Localization ratio calculated assuming that the eigenmodes vary as equation 
(4): L(5) versus 5. 

0- Figums. m e  localization ratio p(n, u )  versus u 
U 1-5 for the regular square lattice. 0.0 0.1 1.0 

We have performed the calculations on a 100 X 100 square lattice, at different 
occupation probabilities; the atoms n' are randomly chosen in a circle of radius of 
15 atomic distances and the average is performed over 60 atoms. We give the results 
in figures 5 and 6, in which we plot the ratio P(n, U) versus U and in figure 7 versus 

As expected, for the regular square lattice (figure 5), all the modes are extended. 
From figure 6(u) forp = 0.9, figure 6(b) forp = 0.8, figure 6(c) forp = 0.7 and figure 
6(d) forp = 0.6, we observe that, a sp  decreases to the percolation threshold, the high- 
frequency modes become more and more localized, rather quickly. At p = 0.9, we 
observe that the region around U = 0.25 tends to be localized, a tendency confirmed at 
p = 0.8,0.7 and 0.6; hence the mode about 0.05 is localized fromp = 0.8 top = 0.6. 
From figure 7(4 for p = O . 6 ,  we observe a very-low-frequency region 
(around U = 0.015) where the modes tend to be localized ( E  = 2; see figure 4). 

With a new numerical method which allows us to investigate percolating clusters 
of greater size than previously studied clusters, we lind that the DOS obeys three 
characteristic regimes: for medium frequencies a power-law behaviour occurs and 
for lower frequencies the Debye law holds, while at the maximum frequencies the 

log U. 
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~tgurr 6. The localization ratio P(n. U) versus U Cor the peroolating cluster: (e) p = 0.9, 
( b ) p = 0 . 8 ; ( c ) p = 0 . 7 ; ( d ) p = 0 . 6 .  

Figure 7. The ~ocdiat ion ratio P(n, U) versus log U for the percolating cluster: (a) p = 
0.9; (b) p = 0.8; (c) p = 0.7; (d) p = 0.6. 

Van Hove singularities appear. So, at p > p c ,  the system appears as a whole, on 
length scales much greater than &, homogeneous while, on length scales much less 
than parts of it behave as homogeneous, their contribution increasing as p 
increases from pc:. The Dos is smoothly connected and no hump in the crossover 
region is exhibited. Finally, the characteristic frequency w, obeys a power law, giving 
a correlation length exponent equal to the mean field classical value. With reference 
to the localization or extended nature of eigenstates in fracton regime, unfortunately 
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our method does not allow us to calculate the exponent d* exactly. We observe 
localization for higher frequencies and some lower frequencies but we cannot draw 
any conclusions about localization or superlocalition. 

This work will allow us to study models which are closer to physical reality. 
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